Provides a pipe-friendly framework to perform a Friedman rank sum
test, which is the non-parametric alternative to the one-way repeated
measures ANOVA test. Wrapper around the function
friedman.test()
. Read more:
Friedman
test in R.
friedman_test(data, formula, ...)
a data.frame containing the variables in the formula.
a formula of the form a ~ b | c
, where a
(numeric) is the dependent variable name; b
is the within-subjects
factor variables; and c
(factor) is the column name containing
individuals/subjects identifier. Should be unique per individual.
other arguments to be passed to the function
friedman.test
.
return a data frame with the following columns:
.y.
: the y (dependent) variable used in the test.
n
:
sample count.
statistic
: the value of Friedman's chi-squared
statistic, used to compute the p-value.
p
: p-value.
method
: the statistical test used to compare groups.
# Load data
#:::::::::::::::::::::::::::::::::::::::
data("ToothGrowth")
df <- ToothGrowth %>%
filter(supp == "VC") %>%
mutate(id = rep(1:10, 3))
head(df)
#> len supp dose id
#> 1 4.2 VC 0.5 1
#> 2 11.5 VC 0.5 2
#> 3 7.3 VC 0.5 3
#> 4 5.8 VC 0.5 4
#> 5 6.4 VC 0.5 5
#> 6 10.0 VC 0.5 6
# Friedman rank sum test
#:::::::::::::::::::::::::::::::::::::::::
df %>% friedman_test(len ~ dose | id)
#> # A tibble: 1 × 6
#> .y. n statistic df p method
#> * <chr> <int> <dbl> <dbl> <dbl> <chr>
#> 1 len 10 20 2 0.0000454 Friedman test