Calculate pairwise comparisons between group levels with corrections for multiple testing.
Arguments
- formula
a formula expression as for other survival models, of the form Surv(time, status) ~ predictors.
- data
a data frame in which to interpret the variables occurring in the formula.
- p.adjust.method
method for adjusting p values (see
p.adjust
). Allowed values include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". If you don't want to adjust the p value (not recommended), use p.adjust.method = "none".- na.action
a missing-data filter function. Default is options()$na.action.
- rho
a scalar parameter that controls the type of test. Allowed values include 0 (for Log-Rank test) and 1 (for peto & peto test).
Author
Alboukadel Kassambara, alboukadel.kassambara@gmail.com
Examples
library(survival)
library(survminer)
data(myeloma)
# Pairwise survdiff
res <- pairwise_survdiff(Surv(time, event) ~ molecular_group,
data = myeloma)
res
#>
#> Pairwise comparisons using Log-Rank test
#>
#> data: myeloma and molecular_group
#>
#> Cyclin D-1 Cyclin D-2 Hyperdiploid Low bone disease MAF
#> Cyclin D-2 0.723 - - - -
#> Hyperdiploid 0.943 0.723 - - -
#> Low bone disease 0.723 0.988 0.644 - -
#> MAF 0.644 0.447 0.523 0.485 -
#> MMSET 0.328 0.103 0.103 0.103 0.723
#> Proliferation 0.103 0.038 0.038 0.062 0.485
#> MMSET
#> Cyclin D-2 -
#> Hyperdiploid -
#> Low bone disease -
#> MAF -
#> MMSET -
#> Proliferation 0.527
#>
#> P value adjustment method: BH
# Symbolic number coding
symnum(res$p.value, cutpoints = c(0, 0.0001, 0.001, 0.01, 0.05, 0.1, 1),
symbols = c("****", "***", "**", "*", "+", " "),
abbr.colnames = FALSE, na = "")
#> Cyclin D-1 Cyclin D-2 Hyperdiploid Low bone disease MAF MMSET
#> Cyclin D-2
#> Hyperdiploid
#> Low bone disease
#> MAF
#> MMSET
#> Proliferation * * +
#> attr(,"legend")
#> [1] 0 ‘****’ 1e-04 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1 \t ## NA: ‘’