Create a histogram plot.
gghistogram(
data,
x,
y = "count",
combine = FALSE,
merge = FALSE,
weight = NULL,
color = "black",
fill = NA,
palette = NULL,
size = NULL,
linetype = "solid",
alpha = 0.5,
bins = NULL,
binwidth = NULL,
title = NULL,
xlab = NULL,
ylab = NULL,
facet.by = NULL,
panel.labs = NULL,
short.panel.labs = TRUE,
add = c("none", "mean", "median"),
add.params = list(linetype = "dashed"),
rug = FALSE,
add_density = FALSE,
label = NULL,
font.label = list(size = 11, color = "black"),
label.select = NULL,
repel = FALSE,
label.rectangle = FALSE,
position = position_identity(),
ggtheme = theme_pubr(),
...
)
a data frame
variable to be drawn.
one of "density" or "count".
logical value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, create a multi-panel plot by combining the plot of y variables.
logical or character value. Default is FALSE. Used only when y is a vector containing multiple variables to plot. If TRUE, merge multiple y variables in the same plotting area. Allowed values include also "asis" (TRUE) and "flip". If merge = "flip", then y variables are used as x tick labels and the x variable is used as grouping variable.
a variable name available in the input data for creating a weighted histogram.
histogram line color and fill color.
the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty".
Numeric value (e.g.: size = 1). change the size of points and outlines.
line type. See show_line_types
.
numeric value specifying fill color transparency. Value should be in [0, 1], where 0 is full transparency and 1 is no transparency.
Number of bins. Defaults to 30.
numeric value specifying bin width. use value between 0 and 1 when you have a strong dense dotplot. For example binwidth = 0.2.
plot main title.
character vector specifying x axis labels. Use xlab = FALSE to hide xlab.
character vector specifying y axis labels. Use ylab = FALSE to hide ylab.
character vector, of length 1 or 2, specifying grouping variables for faceting the plot into multiple panels. Should be in the data.
a list of one or two character vectors to modify facet panel labels. For example, panel.labs = list(sex = c("Male", "Female")) specifies the labels for the "sex" variable. For two grouping variables, you can use for example panel.labs = list(sex = c("Male", "Female"), rx = c("Obs", "Lev", "Lev2") ).
logical value. Default is TRUE. If TRUE, create short labels for panels by omitting variable names; in other words panels will be labelled only by variable grouping levels.
allowed values are one of "mean" or "median" (for adding mean or median line, respectively).
parameters (color, size, linetype) for the argument 'add'; e.g.: add.params = list(color = "red").
logical value. If TRUE, add marginal rug.
logical value. If TRUE, add density curves.
the name of the column containing point labels. Can be also a character vector with length = nrow(data).
a list which can contain the combination of the following elements: the size (e.g.: 14), the style (e.g.: "plain", "bold", "italic", "bold.italic") and the color (e.g.: "red") of labels. For example font.label = list(size = 14, face = "bold", color ="red"). To specify only the size and the style, use font.label = list(size = 14, face = "plain").
can be of two formats:
a character vector specifying some labels to show.
a list containing one or the combination of the following components:
top.up
and
top.down
: to display the labels of the top up/down points. For
example, label.select = list(top.up = 10, top.down = 4)
.
criteria
: to filter, for example, by x and y variabes values, use
this: label.select = list(criteria = "`y` > 2 & `y` < 5 & `x` %in%
c('A', 'B')")
.
a logical value, whether to use ggrepel to avoid overplotting text labels or not.
logical value. If TRUE, add rectangle underneath the text, making it easier to read.
Position adjustment, either as a string, or the result of a call to a position adjustment function. Allowed values include "identity", "stack", "dodge".
function, ggplot2 theme name. Default value is theme_pubr(). Allowed values include ggplot2 official themes: theme_gray(), theme_bw(), theme_minimal(), theme_classic(), theme_void(), ....
other arguments to be passed to
geom_histogram
and ggpar
.
The plot can be easily customized using the function ggpar(). Read ?ggpar for changing:
main title and axis labels: main, xlab, ylab
axis limits: xlim, ylim (e.g.: ylim = c(0, 30))
axis scales: xscale, yscale (e.g.: yscale = "log2")
color palettes: palette = "Dark2" or palette = c("gray", "blue", "red")
legend title, labels and position: legend = "right"
plot orientation : orientation = c("vertical", "horizontal", "reverse")
# Create some data format
set.seed(1234)
wdata = data.frame(
sex = factor(rep(c("F", "M"), each=200)),
weight = c(rnorm(200, 55), rnorm(200, 58)))
head(wdata, 4)
#> sex weight
#> 1 F 53.79293
#> 2 F 55.27743
#> 3 F 56.08444
#> 4 F 52.65430
# Basic density plot
# Add mean line and marginal rug
gghistogram(wdata, x = "weight", fill = "lightgray",
add = "mean", rug = TRUE)
#> Warning: Using `bins = 30` by default. Pick better value with the argument `bins`.
#> Warning: `geom_vline()`: Ignoring `mapping` because `xintercept` was provided.
#> Warning: `geom_vline()`: Ignoring `data` because `xintercept` was provided.
# Change outline colors by groups ("sex")
# Use custom color palette
gghistogram(wdata, x = "weight",
add = "mean", rug = TRUE,
color = "sex", palette = c("#00AFBB", "#E7B800"))
#> Warning: Using `bins = 30` by default. Pick better value with the argument `bins`.
# Change outline and fill colors by groups ("sex")
# Use custom color palette
gghistogram(wdata, x = "weight",
add = "mean", rug = TRUE,
color = "sex", fill = "sex",
palette = c("#00AFBB", "#E7B800"))
#> Warning: Using `bins = 30` by default. Pick better value with the argument `bins`.
# Combine histogram and density plots
gghistogram(wdata, x = "weight",
add = "mean", rug = TRUE,
fill = "sex", palette = c("#00AFBB", "#E7B800"),
add_density = TRUE)
#> Warning: Using `bins = 30` by default. Pick better value with the argument `bins`.
# Weighted histogram
gghistogram(iris, x = "Sepal.Length", weight = "Petal.Length")
#> Warning: Using `bins = 30` by default. Pick better value with the argument `bins`.