R/stat_regline_equation.R
stat_regline_equation.Rd
Add regression line equation and R^2 to a ggplot. Regression
model is fitted using the function lm
.
stat_regline_equation(
mapping = NULL,
data = NULL,
formula = y ~ x,
label.x.npc = "left",
label.y.npc = "top",
label.x = NULL,
label.y = NULL,
output.type = "expression",
geom = "text",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...
)
Set of aesthetic mappings created by aes()
. If specified and
inherit.aes = TRUE
(the default), it is combined with the default mapping
at the top level of the plot. You must supply mapping
if there is no plot
mapping.
The data to be displayed in this layer. There are three options:
If NULL
, the default, the data is inherited from the plot
data as specified in the call to ggplot()
.
A data.frame
, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
fortify()
for which variables will be created.
A function
will be called with a single argument,
the plot data. The return value must be a data.frame
, and
will be used as the layer data. A function
can be created
from a formula
(e.g. ~ head(.x, 10)
).
a formula object
can be numeric
or character
vector of the same length as the number of groups and/or panels. If too
short they will be recycled.
If numeric
, value should
be between 0 and 1. Coordinates to be used for positioning the label,
expressed in "normalized parent coordinates".
If character
,
allowed values include: i) one of c('right', 'left', 'center', 'centre',
'middle') for x-axis; ii) and one of c( 'bottom', 'top', 'center', 'centre',
'middle') for y-axis.
If too short they will be recycled.
numeric
Coordinates (in data units) to be used
for absolute positioning of the label. If too short they will be recycled.
character One of "expression", "latex" or "text".
The geometric object to use to display the data, either as a
ggproto
Geom
subclass or as a string naming the geom stripped of the
geom_
prefix (e.g. "point"
rather than "geom_point"
)
Position adjustment, either as a string naming the adjustment
(e.g. "jitter"
to use position_jitter
), or the result of a call to a
position adjustment function. Use the latter if you need to change the
settings of the adjustment.
If FALSE (the default), removes missing values with a warning. If TRUE silently removes missing values.
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.
FALSE
never includes, and TRUE
always includes.
It can also be a named logical vector to finely select the aesthetics to
display.
If FALSE
, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. borders()
.
other arguments to pass to geom_text
or
geom_label
.
x position for left edge
y position near upper edge
equation for the fitted polynomial as a character string to be parsed
\(R^2\) of the fitted model as a character string to be parsed
Adjusted \(R^2\) of the fitted model as a character string to be parsed
AIC for the fitted model.
BIC for the fitted model.
Set to zero to override the default of the "text" geom.
the source code of the function stat_regline_equation()
is
inspired from the code of the function stat_poly_eq()
(in ggpmisc
package).
# Simple scatter plot with correlation coefficient and
# regression line
#::::::::::::::::::::::::::::::::::::::::::::::::::::
ggscatter(mtcars, x = "wt", y = "mpg", add = "reg.line") +
stat_cor(label.x = 3, label.y = 34) +
stat_regline_equation(label.x = 3, label.y = 32)
# Groupped scatter plot
#::::::::::::::::::::::::::::::::::::::::::::::::::::
ggscatter(
iris, x = "Sepal.Length", y = "Sepal.Width",
color = "Species", palette = "jco",
add = "reg.line"
) +
facet_wrap(~Species) +
stat_cor(label.y = 4.4) +
stat_regline_equation(label.y = 4.2)
# Polynomial equation
#::::::::::::::::::::::::::::::::::::::::::::::::::::
# Demo data
set.seed(4321)
x <- 1:100
y <- (x + x^2 + x^3) + rnorm(length(x), mean = 0, sd = mean(x^3) / 4)
my.data <- data.frame(x, y, group = c("A", "B"),
y2 = y * c(0.5,2), block = c("a", "a", "b", "b"))
# Fit polynomial regression line and add labels
formula <- y ~ poly(x, 3, raw = TRUE)
p <- ggplot(my.data, aes(x, y2, color = group)) +
geom_point() +
stat_smooth(aes(fill = group, color = group), method = "lm", formula = formula) +
stat_regline_equation(
aes(label = paste(..eq.label.., ..adj.rr.label.., sep = "~~~~")),
formula = formula
) +
theme_bw()
ggpar(p, palette = "jco")